If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+4z=1
We move all terms to the left:
z^2+4z-(1)=0
a = 1; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·1·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{5}}{2*1}=\frac{-4-2\sqrt{5}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{5}}{2*1}=\frac{-4+2\sqrt{5}}{2} $
| (7-x)+(2x+2)+3x=17 | | 208=k(k+3) | | 8/3x-32/3= | | 8/3x-32/3=x= | | 6x+1=18-4x | | 8x+12=10x+8 | | 0.5x^2+0.5x=1800 | | x(x+1)=3600 | | 11(j-895)=550 | | x^2+x=3600 | | 9x-21=3(x-7)+6 | | 8=m+108/21 | | (4x-12)=-6 | | 1+8x=-3+6x | | 1.45x+0.42=6.91 | | n+490/28=31 | | 874=19(b+31) | | -2-4x=-4x-8+2 | | t+77/9=14 | | 3(t+7)+4(t+5)=7t+41 | | 5x+7×1=2 | | f-969/2=11 | | 5x+7×0=2 | | 5(q+110)=940 | | 25=0.50x+5 | | 2(v+1)=5v+44 | | 2^x-8=4 | | 5×0+7y=2 | | 8b-3/2b+5=-19 | | (6x-1)=5x+15 | | 25=50x+5 | | 7x-10=28 |